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Abstract 

In this paper, we prove that a monoidal functor (an Ann-functor) F is a monoidal 
equivalence (resp., an Ann-equivalence) iff F is a categorical equivalence. Then,  
we introduce a general method to make the constraints of a monoidal category  
and of an Ann-category be strict. 

1. Introduction 

Monoidal categories appear in every mathematical fields. They are  
the most simple example of categories with an operation and it is also a 
categorification of the notion of monoid. Some more complexed algebraic 
structures such as groups, abelian groups, and rings have been 
categorified by the notions of Gr-categories, braided categories,             
Pic-categories, and Ann-categories. To make the uses of these notions 
conveniently, we need to make each axiomatics more simple (so-called the 
stricting of the constraints). There are many different proofs for stricting 
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the constraints of monoidal categories (see [1], [9]). Similar results have 
been stated for Gr-categories [6], for Ann-categories [5]. Monoidal 
categories with a strict associativity constraint have been used to 
construct a braided categories (see [1]), or to study unit constraints (see 
[2]). 

The main content of this paper is to introduce characters of monoidal 
equivalences and Ann-equivalences, and to apply them to the problem of 
stricting the constraints of monoidal categories and of Ann-categories 
with the same technique. It is known that if M is an A-module, then 

( ) ., MMAHomA ≅  This result can be extended for Ann-categories, 

where module homomorphisms are replaced by -µ functors. If the notion 

of -µ functors is replaced by a weaker notion, we shall obtain an 

equivalence between a monoidal category and a strict one. The notion of 
-µ functor was first introduced in [5] (in Vietnamese). The proof that any 

Ann-category is equivalent to an almost strict one (Theorem 3.11), is 
firstly a full and exact modification of [5], and secondly includes the proof 
that any monoidal category is equivalent to a strict one (Theorem 3.6). 

Fundamental notions on monoidal categories and Ann-categories can 
be found in [3, 4, 7, 8]. Hereafter, for any objects A and B, for 
convenience, let us denote AB instead of .BA ⊗  However, for morphisms, 
we still denote gf ⊗  to avoid confusion with a composition. 

2. Ann-Equivalences Between  
Ann-Categories 

2.1. Monoidal equivalences 

A monoidal category ( )rlaI ,,,,, ⊗C  is a category C, which is 

equipped with a bifunctor ;: CCC →×⊗  with an object I, called the unit 

object and with isomorphisms, which are, respectively, called the 
associativity constraint, the left and right unit constraint 

( ) ( ) ,:,, CBACBAa CBA ⊗⊗→⊗⊗  
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,:,: AIArAAIl AA →⊗→⊗  

satisfying the coherence conditions 

( ) ( ) ,,,,,,,,,,, DCBADCBADCBADCBADCBA aaaidaida ⊗⊗⊗ ⋅=⊗⋅⋅⊗  

( ) .,, BIABABA aidrlid ⋅⊗=⊗  

A monoidal category is strict, if the constraints a, l, r are all 
identities.  

Let ( )rlaI ,,,,, ⊗= CC  and ( )rlaI ′′′′⊗= ,,,,,DD  be monoidal 

categories, a monoidal functor from C to D is a triple ( ), , ,F F F  where 
DC →:F  is a functor, a natural isomorphism 

( ) ,:~
, FBFABAFF BA ⊗→⊗  

and an isomorphism :F ,IFI ′→  satisfying the following coherence 
conditions: 

( ) ( ) ( ) ,~~~~
,,,,,,,, BCACBFCFBFACBACABBA FFFAaaFFFCF ⋅⊗⋅′=⋅⋅⊗  

(1.1) 

( ) ( ), ,I AA FAF r F id F r′= ⋅ ⊗ ⋅  (1.2) 

( ) ( ), .A IA FAF l F F id l′= ⋅ ⊗ ⋅  (1.3) 

A monoidal natural transformation ( ) ( ): , , , ,F F F G G Gα →  between 

monoidal functors from C  to C′  is a natural transformation ,: GF →α  
such that 

,IF G= ⋅α   (1.4) 

and for all pairs ( )BA,  of objects in C  

( ) .~~
,, ABBABABA GF α⋅=⋅α⊗α   (1.5) 

A monoidal functor DC →:F  is a monoidal equivalence, if there 
exists a monoidal functor CD →:G  together with natural monoidal 
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isomorphisms Cid: →⋅α FG  and .id: D→⋅β GF  Two monoidal 

categories are monoidal equivalent, if there exists a monoidal equivalence 
between them. 

We shall first prove a simple character of monoidal equivalences. 

Theorem 2.1. A monoidal functor DC →:F  is a monoidal 
equivalence iff F is a categorical equivalence. 

Proof. Let DC →:F  be a monoidal functor with a natural 
isomorphism 

( ).:~
, YXFFYFXF YX ⊗→⊗  

Since F is a categorical equivalence, there exists a functor CD →:G  
and morphisms .id:andid: DC →β→α FGGF  Moreover, we can 

choose βα,  such that the quadruple ( )βα,,, GF  satisfies ( ) ;FAAF β=α  

( ) ,GBBG α=β  for all objects ., DC ∈∈ BA  The natural isomorphism 

( ),:~
, VUGGVGUG VU ⊗→⊗  

for D∈VU ,  is defined by the commutative perimeter, FG  is defined by 

the commutative region (1) of the following diagram: 

 

It follows that the region (2) commutes, so β  is an ⊗ -morphism. Finally, 

α  is a morphism since β  is a morphism.  



ON MONOIDAL EQUIVALENCES AND … 45

2.2. Ann-equivalences 

A Pic-category is a Gr-category together with a commutativity 
constraint c, which is compatible with the associativity one. In other words, 
a Pic-category is a symmetric monoidal category in which every object is 
invertible and every morphism is an isomorphism. It is considered as a 
categorification of the abelian group structure. The notion of Ann-
categories is constructed as a categorification of the ring structure. An 
Ann-category consists of 

(i) a category A together with two bifunctors ;:, AAA →×⊗⊕  

(ii) a fixed object A∈0  together with natural isomorphisms 

dgca ,,,+  such that ( ( ))dgca ,,0,,,, +⊕A  is a Picard category (or a 

Pic-category); 

(iii) a fixed object A∈I  together with natural isomorphisms rla ,,  

such that ( )( )rlIa ,,,,, ⊗A  is a monoidal category; 

(iv) the distributive natural isomorphisms RL,  

( ) ( ) ( ),:,, YAXAYXAYXA ⊗⊕⊗→⊕⊗L  

( ) ( ) ( ),:,, AYAXAYXYXA ⊗⊕⊗→⊗⊕R  

satisfy the coherence conditions (see [4] for more detail). 

Let BA,  be Ann-categories. An Ann-functor from A to B is a triple 

( ), , ,F F F˘  where ( ),F F̆  is a symmetric monoidal -⊕ functor and ( )FF ~,  

is a monoidal -⊗ functor such that the two following diagrams commute: 

  

(2.1) 
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 (2.2) 

Let F, G be Ann-functors. A morphism GF →ϕ :  is an Ann-morphism, 

if it is an -⊕ morphism, as well as an -⊗ morphism, i.e., the following 

diagrams commute: 

 

An Ann-functor BA →:F  is an Ann-equivalence, if there exists another 
one AB →:G  and Ann-isomorphisms FGGF :,id: β≅α A .idB≅  

Two Ann-categories are Ann-equivalent, if there exists an Ann-equivalence 
between them. The main result of this section is the following theorem: 

Theorem 2.2. An Ann-functor BA →:F  is an Ann-equivalence iff 
F is a categorical equivalence. 

In order to prove this theorem, we first prove the following lemma: 

Lemma 2.3. If the natural equivalence GF ≅α :  is an                   
⊕ -morphism, as well as an ⊗ -morphism, and the functor BA →:F  is 
compatible with the left distributivity constraints ,, LL ′  then G is also 

compatible with .LL ′,  Similarly, this holds for the right distributivity 

constraints .RR ′,  

Proof. In the following diagram, the regions (1) and (5) commute 
since α  is an -⊗ morphism; the regions (2) and (4) commute since α  is an 
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-⊕ morphism; the region (3) commutes thanks to the compatibility of F 

with ;, LL ′  the region (6) commutes since α  is a morphism; and the 

region (7) commutes thanks to the naturality of .L′  

 

Hence, the perimeter commutes, it implies that G is compatible with 
., LL ′   

Using the above lemma, we prove the following lemma: 

Lemma 2.4. Let BA →:F  and AB →:G  be functors. If F is 
compatible with LL ′,  and the natural isomorphism Bid: ≅α FG  is an 

-⊕ morphism, as well as an ⊗ -morphism, then G is also compatible with 

., LL′  

Proof. Consider the following diagram: In this diagram, the regions 

(1) and (5) commute thanks to the definition of ;FG˘  the regions (2) and 

(7) commute thanks to the definition of ;FG  the region (3) commutes 

thanks to the naturality of ;~F  the region (6) commutes thanks to the 

naturality of ;F̆  and the region (8) commutes thanks to the compatibility 
of F with ., LL ′  According to Lemma 2.3, FG is compatible with ,, LL ′′  

so the perimeter commutes. Therefore, the region (4) commutes; this 
region is just the image through F of the diagram determining the 
compatibility of G with ., LL′  
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Since F is faithful, G is compatible with ., LL ′  This completes the proof. 

  

The proof of Theorem 2.2. By Theorem 2.1, there exists a functor 
AB →:G  and a natural isomorphism G~  such that ( )GG ~,  is a 

monoidal ⊗ -functor and BA id:,id: ≅β≅α FGGF  are -⊗ isomorphisms. 

For the operation ,⊕  there exists a natural isomorphism Ğ  such that 

( ),G Ğ  is an -⊕ functor and βα,  are -⊕ isomorphisms. By Lemma 2.3, 

the triple ( ), ,G G G˘  is an Ann-functor. Therefore, ( ), ,F F F˘  is an Ann-
equivalence.   

3. Almost Strict Ann-Categories 

3.1. Strict monoidal categories 

The proof of Cayley theorem for groups and the proof of 
( ) ,, MMRHomR ≅  for R-modules use the same technique. This suggests 

us a united technique to make a monoidal category, as well as an Ann-
category be strict. 
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Definition 3.1. An M-functor of the monoidal category C is a pair 
( ),, FF  consisting of a functor CC →:F  and a natural isomorphisms 

( ) ,:, BFABAFF BA ⊗→⊗  

such that the following diagrams commute: 

 

 (3.1) 

 (3.2) 

Let ( )FF ,  and ( )GG,  be M-functors of .C  An M-morphism 

( )FF ,:α  ( )GG,→  is a morphism GF →α :  such that the following 
diagram commute: 

  

(3.3) 
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The composition of two M-morphisms is known as the composition of two 
usual morphisms. One can verify that the composition of                           
M-morphisms is also an M-morphism. 

Example. For any object X of ,C  the pair ( )XX LL ,  defined by 

( ) ( ) ,,, ,,, BAX
X

BAX
XX aLuiduLAXAL =⊗=⊗=  

is an M-functor of C. For any pair ( )YX ,  of objects of C and a morphism 

,: YXf →  the morphism YX LL →α :  given by Aid⊗=α fA  is a              

M-morphism of C. 

The set of all M-functors and M-morphisms of C forms a category, 
denoted by ( ).CM  We now equip ( )CM  with an operation ⊗  together 

with an associativity constraint ,∗a  a unit constraint ( )∗∗∗ rlI ,,  to make 

it become a monoidal category. 

Lemma 3.2. Let ( )FF ,  and ( )GG,  be M-functors of C. Then, the 

composition FG is also an M-functor with the natural isomorphism FG  
defined by following commutative diagram, for any pair ( )BA,  of objects 

of C: 

  

(3.4) 

Proof. In the following diagram, the regions (1) and (4) commute 
thanks to Diagram (3.1) for the M-functors F, G. The region (2) commutes 

thanks to the naturality of .F  The regions (3), (5), and (6) commute 
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thanks to the definition of the isomorphism .FG  Therefore, the perimeter 

which is the Diagram (3.1) for ( )FGFG,  commutes. 

 

We now prove that FG  satisfies (3.2). For any object A of ,C  we have 

( )
( ( ))

( )
( ) ( )

( )
( ).2.3

,
2.3

,,
4.3

, AIAGAIAIGAFGAIAFGA rFGGFrFGFFrFGr =⋅=⋅⋅=⋅  

 

Lemma 3.3. For any pair (( ) ( ) ( ) ( ))GGGGFFFF ′′→′′→
βα ,,;,,  of 

M-morphisms of ,C  the morphism 

,: GFFG ′′→β∗α  

defined by the following commutative diagram: 
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 (3.5) 

is an M-morphism from ( )FGFG,  to ( )., GFGF ′′′′  

Proof. Consider the following diagram. The regions (1) and (6) 

commute thanks to definitions of the isomorphisms FG  and GF ′′  
(Diagram (3.4)), the regions (3) and (5) commute thanks to definitions of  
M-morphisms (Diagram (3.3)) ., F ′α  The regions (2) and (4) commute 
thanks to the naturality of the morphisms ., βα  The regions (7) and (8) 
commute thanks to the determination of β∗α  (Diagram (3.5)).  

 

Hence, the perimeter which is the Diagram (3.5) for β∗α  commutes.  
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Lemma 3.4. The category ( )CM  becomes an -⊗ category together with 

the operation ⊗  defined by 

( ) ( ) ( ),,,, FGFGGGFF =⊗  

 .: GFFG ′′→β∗α=β⊗α  

Proof. Thanks to Lemmas 3.2 and 3.3, the tensor product of two        
M-functors is an M-functor and the tensor product of two M-morphisms is 
an M-morphism. One can verify that the law ⊗  determined above is a 
tensor operation. Therefore, ( )CM  is an -⊗ category.  

For M-functors ( ) ( ) ( ),,,,,, HHGGFF  one can easily prove that 

( ) ( ) .HFGGHF =  So, the identity is an associativity constraint with 

respect to ⊗  on ( ).CM  The ⊗ -category ( )CM  has unit object 

( ),, IdIdI =∗  where Id  is an identity functor of C  and .idId =  

Moreover, unit constraints can be chosen to be identities. So, we obtain 
the following lemma: 

Lemma 3.5. The tensor category ( )CM  is a strict monoidal category. 

From Theorem 2.1 and Lemma 3.5, we obtain the following result: 

Theorem 3.6. Each monoidal category is monoidal equivalent to a 
strict one. 

Proof. We now prove the theorem in the following steps: 

Step 1. Define a monoidal functor ( )CMC →Φ :  as follows: 

( ) ( ),, AA LLA =Φ  

( ) ,: XBXAidff XX ⊗→⊗⊗=Φ  

for any objects XA,  and any morphism BAf →:  in .C  From the 

above example, ( )AA LL ,  is an M-functor and ( )fΦ  is an M-morphism. 
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Furthermore, one can verify that the triple ( ), ,Φ Φ Φ  is a monoidal 

functor, where Φ~  and Φ  are isomorphisms defined by 

( ) ( ) ( ) ( ),:~ 1
,,, XBAXBAaX XBABA ⊗⊗→⊗⊗=Φ −  

( ) ( ): .X Xl I I∗Φ = Φ →  

Step 2. In this step, we prove the triple ( ), ,Φ Φ Φ  is a monoidal 

equivalence. In order to do this, we have to exhibit a functor, which is the 
inverse equivalence of .Φ  Consider the functor 

 ( ) ,: CCM →Γ  

( ) ( ) ( ) ( ) ( ),:,, IGIFIFFF I →α=αΓ=Γ  

for any M-functor ( )FF ,  and any M-morphism ( ) ( ).,,: GGFF →α  

Observe that ( ) ( ) ( ) ( ) IBIAidfIfff I ⊗→⊗⊗=Φ=ΦΓ=ΓΦ :  

for any morphism BAf →:  in C. Then, we have the natural 

isomorphism ,: CIdr ≅ΓΦ  where r is a right unit constraint of C. We 

now prove that, there exists an isomorphism ρ  between ΦΓ  and ( )CMid  

of ( ).CM  We have 

( ) ( ) ( )( ) ( ),,, FIFI LLIfFF =Φ=ΦΓ  

( ) ( ) ( ) ( ),,,: GIGIFIFI
I LLLL →αΦ=αΦΓ  

where ( ) ( ).,,,: GGFFα  

We define the natural isomorphism ( )CMId≅ΦΓρ :  as follows: 

( )( ) ( ) ( ) ( ) ( ) ( ) ( ).,,:1
,, XFFXLLFlFX FIFI
XIXFF →=ρ −   (3.6) 

Consider the following diagram: 
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In this diagram, the region (1) commutes since it is the Diagram (3.1) 
for M-functor ( ),, FF  the region (2) commutes thanks to the compatibility 

of the associativity constraint a with the unit constraint ( )rlI ,,  (image 

through F ), and the region (3) commutes thanks to the naturality of .F  
Hence, the perimeter which is the Diagram (3.3) for the M-morphism 

( )FF ,ρ  commutes. This follows that the definition of the natural 

isomorphism ρ  is well-defined. Since Φ  is a categorical equivalence and 
from Theorem 2.1, we infer that Φ  is a monoidal equivalence. 

3.2. Almost strict Ann-categories 

An Ann-category A is called almost strict, if its constraints, except for 
a distributivity one (left or right) and the commutativity one, are all 
identities.  

We now construct an almost strict Ann-category ( )Aµ  based on the 
Ann-category A. First, let us assume that the Ann-category A is a strict 
monoidal category with respect to ⊕  (since any Ann-category is Ann-
equivalent to a such Ann-category, Proposition 4.1 [4]). 

Definition 3.7. The triple ( ), ,F F F˘  is a -µ functor, if ( ),F F̆  is a 

symmetric monoidal endo-equivalence with respect to ,⊕  and ( )FF ,  is 
an M-functor with respect to ⊗  of the Ann-category A, such that the 
following conditions hold: 
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(i) the family ( )−,XF  is an -⊕ morphism from XLF  to ,FXL  

(ii) the family ( )YF ,−  is an -⊗ morphism from YRF  to .FLY  

A µ -morphism from ( ), ,F F F˘  to ( ), ,G G G˘  is an -⊕ morphism 

GF →φ :  making the following diagram commute: 

 

Example. For any object ,A∈A  the pair ( ), ,A AL L̆  where ,
A
X YL =˘  

YXA ,,L  is a µ -functor. Any morphism BAu →:  determines a 

-µ morphism ( ) ( ): , , , ,A BA A B BL L L L L Lφ →˘ ˘  defined by .Xu id
X ⊗=φ  

Hereafter, we denote a sub-category of ( )AM  by ( ),Aµ  whose objects 

are -µ functors of A and whose morphisms are µ -morphisms. Then ( )Aµ  

is equipped with a strict monoidal structure induced by the one on ( ).AM  

One can verify the following lemmas: 

Lemma 3.8. ( )Aµ  is a category with the operation ⊕  defined by 

( ) ,GXFXXGF ⊕=⊕  

( ) ( ), ,, ,X Y X YX YF G F G⊕ = ⊕˘ ˘˘ ν  

( ) ,XXX vv /⊕φ=/⊕φ  
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where ( ) ( ) ( ) ( )DBCADCBADCBA ⊕⊕⊕→⊕⊕⊕= :,,,νν  is the 

morphism built uniquely from the constraints cida ,,+  in the Pic-

category ( )., ⊕A  

Lemma 3.9. ( )Aµ  is a category, whose the associativity and unit 

constraints are strict. Moreover, it has 

(i) the zero object ( )0 , ,∗ = θ θ θ˘  given by 

( ) ( ) ( ) 1
0 , 0 ,0, , , ;

Y
X Y X YX f id id R −θ = θ = θ = θ =˘  

(ii) the commutativity constraint ( ) .,, GXFXGF cXc =∗  

Proposition 3.10. ( )Aµ  is an almost Ann-category, whose the 

distributivity constraints given by 

( ), , , , .F G H GX HXX F Id∗ ∗= =˘L R  

We are now ready to prove the main result of this section. This result 
was introduced in [5] (in Vietnamese). Here, we shall give a full and exact 
proof thanks to the results in Subsection 3.1 and Theorem 2.2. 

Theorem 3.11. Any Ann-category is Ann-equivalent to an almost 
strict Ann-category. 

Proof. As mentioned above, we always can suppose that the category 
A is strict monoidal with respect to the operation .⊕  We now show that A 
and the almost strict Ann-category ( )Aµ  are equivalent. Consider the 
functor ( )AA µ→Φ :  given by 

( ) ( ), , ,A A AA L L LΦ = ˘  

( ) ( ) ( ) ,,: XuuLLLuLu X
BA ⊗=→=Φ  

( ),A B XΦ̆ ( ) ( ) .~, 1
,,,,,

−=Φ= XBABAXBA aXR  

We shall prove that Φ  is an equivalence. Consider the functor ( )Aµ:J  

A→  defined by 
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( ) ( ) ( ) ( ), , , .IJ F F F F I J F G FI GI
φφ

= → = →˘  

According to the proof of Theorem 3.6, we have isomorphisms 

,:,: BA IdJIdJ ≅Φβ≅Φα  

where FFr ρ=β=α ,  ( Fρ  is defined by the relation (3.6)). One can 

verify that Fρ  is an -⊕ morphism, and therefore is a -µ morphism. This 

shows that Φ  is an equivalence. According to Theorem 2.5, Φ  is an Ann-
equivalence.  

Proposition 3.12. The condition idc XX =,  (the regular condition) 

for any object A∈X  is necessary and sufficient for the Ann-category A to 
be Ann-equivalent to an Ann-category, whose commutativity constraint is 
the identity. 

Proof. Assume that the Ann-category A satisfies the regular 
condition for the commutativity constraint c, in the sense ,, idc XX =  for 

all .A∈X  Then A is Ann-equivalent to ,A ′  which is symmetric monoidal 

category with respect to .⊕  By Proposition 3.9, the commutativity 

constraint ∗c  of ( )A ′µ  is the identity. 

Conversely, from the commutative diagram 

 

we have ( ) ,, Idc XX =Φ  where Φ  is an Ann-equivalence. Therefore, 

., idc XX =   
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