ON MONOIDAL EQUIVALENCES AND ANN-EQUIVALENCES

NGUYEN TIEN QUANG

Department of Mathematics Hanoi National University of Education 136 Xuanthuy Hanoi Vietnam e-mail: nguyenquang272002@yahoo.com

Abstract

In this paper, we prove that a monoidal functor (an Ann-functor) F is a monoidal equivalence (resp., an Ann-equivalence) iff F is a categorical equivalence. Then, we introduce a general method to make the constraints of a monoidal category and of an Ann-category be strict.

1. Introduction

Monoidal categories appear in every mathematical fields. They are the most simple example of categories with an operation and it is also a categorification of the notion of monoid. Some more complexed algebraic structures such as groups, abelian groups, and rings have been categorified by the notions of Gr-categories, braided categories, Pic-categories, and Ann-categories. To make the uses of these notions conveniently, we need to make each axiomatics more simple (so-called the stricting of the constraints). There are many different proofs for stricting

Keywords and phrases: monoidal category, Ann-category, strict constraint.

Received April 9, 2011

© 2011 Scientific Advances Publishers

²⁰¹⁰ Mathematics Subject Classification: 18D10.

NGUYEN TIEN QUANG

the constraints of monoidal categories (see [1], [9]). Similar results have been stated for Gr-categories [6], for Ann-categories [5]. Monoidal categories with a strict associativity constraint have been used to construct a braided categories (see [1]), or to study unit constraints (see [2]).

The main content of this paper is to introduce characters of monoidal equivalences and Ann-equivalences, and to apply them to the problem of stricting the constraints of monoidal categories and of Ann-categories with the same technique. It is known that if M is an A-module, then $Hom_A(A, M) \cong M$. This result can be extended for Ann-categories, where module homomorphisms are replaced by μ -functors. If the notion of μ -functors is replaced by a weaker notion, we shall obtain an equivalence between a monoidal category and a strict one. The notion of μ -functor was first introduced in [5] (in Vietnamese). The proof that any Ann-category is equivalent to an almost strict one (Theorem 3.11), is firstly a full and exact modification of [5], and secondly includes the proof that any monoidal category is equivalent to a strict one (Theorem 3.6).

Fundamental notions on monoidal categories and Ann-categories can be found in [3, 4, 7, 8]. Hereafter, for any objects A and B, for convenience, let us denote AB instead of $A \otimes B$. However, for morphisms, we still denote $f \otimes g$ to avoid confusion with a composition.

2. Ann-Equivalences Between Ann-Categories

2.1. Monoidal equivalences

A monoidal category $(\mathbf{C}, \otimes, I, a, l, r)$ is a category \mathbf{C} , which is equipped with a bifunctor $\otimes : \mathbf{C} \times \mathbf{C} \to \mathbf{C}$; with an object *I*, called *the unit* object and with isomorphisms, which are, respectively, called *the* associativity constraint, the left and right unit constraint

$$a_{A,B,C}: A \otimes (B \otimes C) \to (A \otimes B) \otimes C,$$

42

$$l_A: I \otimes A \to A, r_A: A \otimes I \to A,$$

satisfying the coherence conditions

$$\begin{aligned} (a_{A,B,C} \otimes id_D) \cdot a_{A,B \otimes C,D} \cdot (id_A \otimes a_{B,C,D}) &= a_{A \otimes B,C,D} \cdot a_{A,B,C \otimes D}, \\ \\ id_A \otimes l_B &= (r_A \otimes id_B) \cdot a_{A,I,B}. \end{aligned}$$

A monoidal category is *strict*, if the constraints a, l, r are all identities.

Let $\mathbf{C} = (\mathbf{C}, \otimes, I, a, l, r)$ and $\mathbf{D} = (\mathbf{D}, \otimes, I', a', l', r')$ be monoidal categories, *a monoidal functor* from \mathbf{C} to \mathbf{D} is a triple (F, \tilde{F}, \hat{F}) , where $F : \mathbf{C} \to \mathbf{D}$ is a functor, a natural isomorphism

$$\widetilde{F}_{A,B}: F(A \otimes B) \to FA \otimes FB,$$

and an isomorphism $\widehat{F}: FI \to I'$, satisfying the following coherence conditions:

$$(\widetilde{F}_{A,B} \otimes FC) \cdot \widetilde{F}_{AB,C} \cdot F(a_{A,B,C}) = a'_{FA,FB,FC} \cdot (FA \otimes \widetilde{F}_{B,C}) \cdot \widetilde{F}_{A,BC},$$
(1.1)

$$F(r_A) = \widetilde{F}_{I,A} \cdot (id \otimes \widehat{F}) \cdot r'_{FA}, \qquad (1.2)$$

$$F(l_A) = \widetilde{F}_{A,I} \cdot (\widehat{F} \otimes id) \cdot l'_{FA}.$$
(1.3)

A monoidal natural transformation $\alpha: (F, \widetilde{F}, \widehat{F}) \to (G, \widetilde{G}, \widehat{G})$ between monoidal functors from **C** to **C**' is a natural transformation $\alpha: F \to G$, such that

$$\widehat{F} = \widehat{G} \cdot \alpha_I, \tag{1.4}$$

and for all pairs (A, B) of objects in C

$$(\alpha_A \otimes \alpha_B) \cdot \widetilde{F}_{A,B} = \widetilde{G}_{A,B} \cdot \alpha_{AB}. \tag{1.5}$$

A monoidal functor $F : \mathbf{C} \to \mathbf{D}$ is a monoidal equivalence, if there exists a monoidal functor $G : \mathbf{D} \to \mathbf{C}$ together with natural monoidal

isomorphisms $\alpha : G \cdot F \to id_{\mathbb{C}}$ and $\beta : F \cdot G \to id_{\mathbb{D}}$. Two monoidal categories are *monoidal equivalent*, if there exists a monoidal equivalence between them.

We shall first prove a simple character of monoidal equivalences.

Theorem 2.1. A monoidal functor $F : \mathbf{C} \to \mathbf{D}$ is a monoidal equivalence iff F is a categorical equivalence.

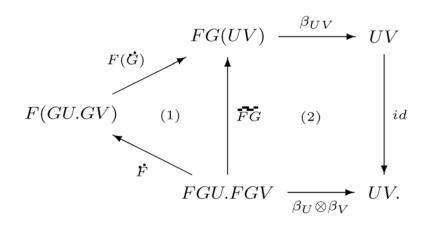
Proof. Let $F : \mathbf{C} \to \mathbf{D}$ be a monoidal functor with a natural isomorphism

$$\widetilde{F}_{X,Y}: FX \otimes FY \to F(X \otimes Y).$$

Since *F* is a categorical equivalence, there exists a functor $G : \mathbf{D} \to \mathbf{C}$ and morphisms $\alpha : GF \to \mathrm{id}_{\mathbf{C}}$ and $\beta : FG \to \mathrm{id}_{\mathbf{D}}$. Moreover, we can choose α , β such that the quadruple (F, G, α, β) satisfies $F(\alpha_A) = \beta_{FA}$; $G(\beta_B) = \alpha_{GB}$, for all objects $A \in \mathbf{C}$, $B \in \mathbf{D}$. The natural isomorphism

$$\widetilde{G}_{U,V}: GU \otimes GV \to G(U \otimes V),$$

for $U, V \in \mathbf{D}$ is defined by the commutative perimeter, \widetilde{FG} is defined by the commutative region (1) of the following diagram:



It follows that the region (2) commutes, so β is an \otimes -morphism. Finally, α is a morphism since β is a morphism.

44

2.2. Ann-equivalences

A *Pic-category* is a Gr-category together with a commutativity constraint *c*, which is compatible with the associativity one. In other words, a Pic-category is a symmetric monoidal category in which every object is invertible and every morphism is an isomorphism. It is considered as a categorification of the abelian group structure. The notion of Ann-categories is constructed as a categorification of the ring structure. An *Ann-category* consists of

(i) a category **A** together with two bifunctors \oplus , \otimes : **A** × **A** \rightarrow **A**;

(ii) a fixed object $0 \in \mathbf{A}$ together with natural isomorphisms a^+ , c, g, d such that $(\mathbf{A}, \oplus, a^+, c, (0, g, d))$ is a Picard category (or a Pic-category);

(iii) a fixed object $I \in \mathbf{A}$ together with natural isomorphisms a, l, r such that $(\mathbf{A}, \otimes, a, (I, l, r))$ is a monoidal category;

(iv) the distributive natural isomorphisms $\mathfrak{L}, \mathfrak{R}$

$$\mathfrak{L}_{A,X,Y} : A \otimes (X \oplus Y) \to (A \otimes X) \oplus (A \otimes Y),$$
$$\mathfrak{R}_{A,X,Y} : (X \oplus Y) \otimes A \to (X \otimes A) \oplus (Y \otimes A),$$

satisfy the coherence conditions (see [4] for more detail).

Let **A**, **B** be Ann-categories. An Ann-functor from **A** to **B** is a triple $(F, \breve{F}, \widetilde{F})$, where (F, \breve{F}) is a symmetric monoidal \oplus -functor and (F, \widetilde{F}) is a monoidal \otimes -functor such that the two following diagrams commute:

Let F, G be Ann-functors. A morphism $\varphi: F \to G$ is an *Ann-morphism*, if it is an \oplus -morphism, as well as an \otimes -morphism, i.e., the following diagrams commute:

An Ann-functor $F : \mathbf{A} \to \mathbf{B}$ is an *Ann-equivalence*, if there exists another one $G : \mathbf{B} \to \mathbf{A}$ and Ann-isomorphisms $\alpha : GF \cong id_{\mathbf{A}}, \beta : FG \cong id_{\mathbf{B}}$. Two Ann-categories are *Ann-equivalent*, if there exists an Ann-equivalence between them. The main result of this section is the following theorem:

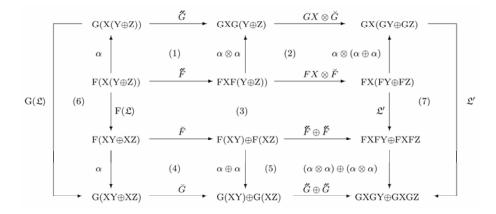
Theorem 2.2. An Ann-functor $F : \mathbf{A} \to \mathbf{B}$ is an Ann-equivalence iff F is a categorical equivalence.

In order to prove this theorem, we first prove the following lemma:

Lemma 2.3. If the natural equivalence $\alpha : F \cong G$ is an \oplus -morphism, as well as an \otimes -morphism, and the functor $F : \mathbf{A} \to \mathbf{B}$ is compatible with the left distributivity constraints $\mathfrak{L}, \mathfrak{L}'$, then G is also compatible with $\mathfrak{L}, \mathfrak{L}'$. Similarly, this holds for the right distributivity constraints $\mathfrak{R}, \mathfrak{R}'$.

Proof. In the following diagram, the regions (1) and (5) commute since α is an \otimes -morphism; the regions (2) and (4) commute since α is an

 \oplus -morphism; the region (3) commutes thanks to the compatibility of F with $\mathfrak{L}, \mathfrak{L}'$; the region (6) commutes since α is a morphism; and the region (7) commutes thanks to the naturality of \mathfrak{L}' .

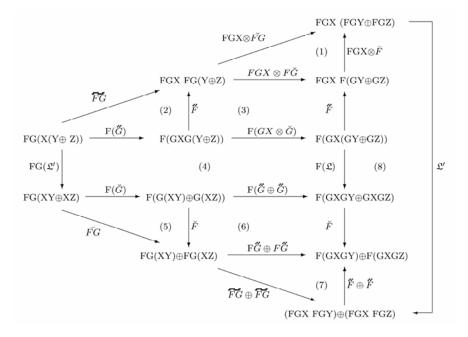


Hence, the perimeter commutes, it implies that G is compatible with $\mathfrak{L}, \mathfrak{L}'$.

Using the above lemma, we prove the following lemma:

Lemma 2.4. Let $F : \mathbf{A} \to \mathbf{B}$ and $G : \mathbf{B} \to \mathbf{A}$ be functors. If F is compatible with $\mathfrak{L}, \mathfrak{L}'$ and the natural isomorphism $\alpha : FG \cong id_{\mathbf{B}}$ is an \oplus -morphism, as well as an \otimes -morphism, then G is also compatible with $\mathfrak{L}', \mathfrak{L}$.

Proof. Consider the following diagram: In this diagram, the regions (1) and (5) commute thanks to the definition of \widetilde{FG} ; the regions (2) and (7) commute thanks to the definition of \widetilde{FG} ; the region (3) commutes thanks to the naturality of \widetilde{F} ; the region (6) commutes thanks to the naturality of \breve{F} ; and the region (8) commutes thanks to the compatibility of F with \mathfrak{L} , \mathfrak{L}' . According to Lemma 2.3, FG is compatible with \mathfrak{L}' , \mathfrak{L}' , so the perimeter commutes. Therefore, the region (4) commutes; this region is just the image through F of the diagram determining the compatibility of G with \mathfrak{L}' , \mathfrak{L} .



Since *F* is faithful, *G* is compatible with $\mathfrak{L}, \mathfrak{L}'$. This completes the proof.

The proof of Theorem 2.2. By Theorem 2.1, there exists a functor $G : \mathbf{B} \to \mathbf{A}$ and a natural isomorphism \tilde{G} such that (G, \tilde{G}) is a monoidal \otimes -functor and $\alpha : GF \cong \operatorname{id}_{\mathbf{A}}, \beta : FG \cong \operatorname{id}_{\mathbf{B}}$ are \otimes -isomorphisms. For the operation \oplus , there exists a natural isomorphism \check{G} such that (G, \check{G}) is an \oplus -functor and α, β are \oplus -isomorphisms. By Lemma 2.3, the triple $(G, \check{G}, \widetilde{G})$ is an Ann-functor. Therefore, $(F, \check{F}, \widetilde{F})$ is an Annequivalence.

3. Almost Strict Ann-Categories

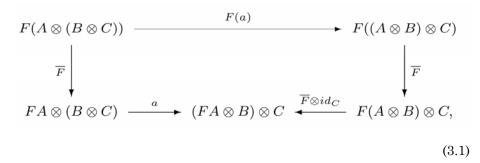
3.1. Strict monoidal categories

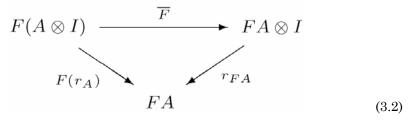
The proof of Cayley theorem for groups and the proof of $Hom_R(R, M) \cong M$, for *R*-modules use the same technique. This suggests us a united technique to make a monoidal category, as well as an Ann-category be strict.

Definition 3.1. An *M*-functor of the monoidal category C is a pair (F, \overline{F}) , consisting of a functor $F : \mathbb{C} \to \mathbb{C}$ and a natural isomorphisms

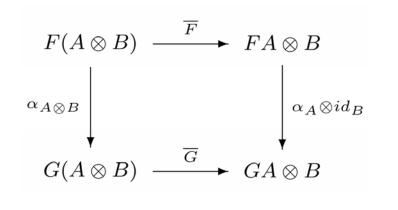
$$\overline{F}_{A,B}: F(A \otimes B) \to FA \otimes B,$$

such that the following diagrams commute:





Let (F, \overline{F}) and (G, \overline{G}) be *M*-functors of **C**. An *M*-morphism $\alpha : (F, \overline{F}) \to (G, \overline{G})$ is a morphism $\alpha : F \to G$ such that the following diagram commute:



(3.3)

The composition of two M-morphisms is known as the composition of two usual morphisms. One can verify that the composition of M-morphisms is also an M-morphism.

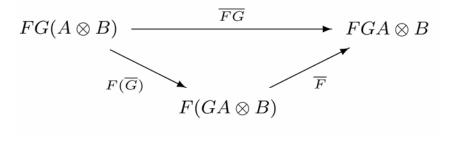
Example. For any object X of C, the pair (L^X, \overline{L}^X) defined by

$$L^X(A) = X \otimes A, \quad L^X(u) = id_X \otimes u, \quad \overline{L}^X_{A,B} = a_{X,A,B},$$

is an *M*-functor of **C**. For any pair (X, Y) of objects of **C** and a morphism $f: X \to Y$, the morphism $\alpha: L^X \to L^Y$ given by $\alpha_A = f \otimes id_A$ is a *M*-morphism of **C**.

The set of all *M*-functors and *M*-morphisms of **C** forms a category, denoted by $\mathbf{M}(\mathbf{C})$. We now equip $\mathbf{M}(\mathbf{C})$ with an operation \otimes together with an associativity constraint a^* , a unit constraint (I^*, l^*, r^*) to make it become a monoidal category.

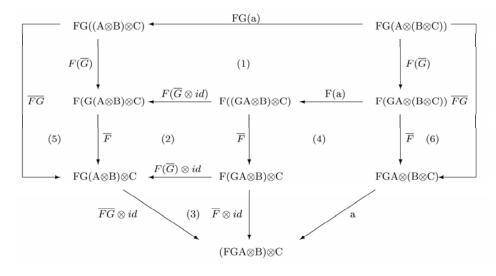
Lemma 3.2. Let (F, \overline{F}) and (G, \overline{G}) be M-functors of C. Then, the composition FG is also an M-functor with the natural isomorphism \overline{FG} defined by following commutative diagram, for any pair (A, B) of objects of C:



(3.4)

Proof. In the following diagram, the regions (1) and (4) commute thanks to Diagram (3.1) for the *M*-functors *F*, *G*. The region (2) commutes thanks to the naturality of \overline{F} . The regions (3), (5), and (6) commute

thanks to the definition of the isomorphism \overline{FG} . Therefore, the perimeter which is the Diagram (3.1) for (FG, \overline{FG}) commutes.



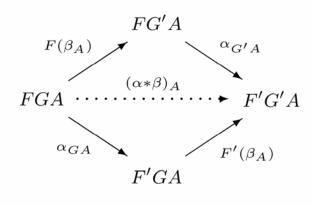
We now prove that \overline{FG} satisfies (3.2). For any object A of C, we have

$$r_{FGA} \cdot \overline{FG}_{A,I} \stackrel{(3.4)}{=} r_{FGA} \cdot (\overline{F}_{GA,I} \cdot F(\overline{G}_{A,I})) \stackrel{(3.2)}{=} F(r_{GA}) \cdot F(\overline{G}_{A,I}) \stackrel{(3.2)}{=} FG(r_A).$$

Lemma 3.3. For any pair $((F, \overline{F}) \xrightarrow{\alpha} (F', \overline{F'}); (G, \overline{G}) \xrightarrow{\beta} (G', \overline{G'}))$ of *M*-morphisms of C, the morphism

$$\alpha * \beta : FG \to F'G',$$

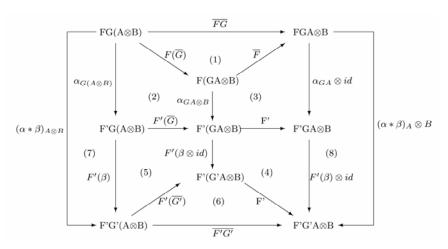
defined by the following commutative diagram:



(3.5)

is an M-morphism from (FG, \overline{FG}) to $(F'G', \overline{F'G'})$.

Proof. Consider the following diagram. The regions (1) and (6) commute thanks to definitions of the isomorphisms \overline{FG} and $\overline{F'G'}$ (Diagram (3.4)), the regions (3) and (5) commute thanks to definitions of *M*-morphisms (Diagram (3.3)) α , $\overline{F'}$. The regions (2) and (4) commute thanks to the naturality of the morphisms α , β . The regions (7) and (8) commute thanks to the determination of $\alpha * \beta$ (Diagram (3.5)).



Hence, the perimeter which is the Diagram (3.5) for $\alpha * \beta$ commutes.

Lemma 3.4. The category $\mathbf{M}(\mathbf{C})$ becomes an \otimes -category together with the operation \otimes defined by

$$(F, \overline{F}) \otimes (G, \overline{G}) = (FG, \overline{FG}),$$

 $\alpha \otimes \beta = \alpha * \beta : FG \to F'G'$

Proof. Thanks to Lemmas 3.2 and 3.3, the tensor product of two M-functors is an M-functor and the tensor product of two M-morphisms is an M-morphism. One can verify that the law \otimes determined above is a tensor operation. Therefore, $\mathbf{M}(\mathbf{C})$ is an \otimes -category.

For *M*-functors (F, \overline{F}) , (G, \overline{G}) , (H, \overline{H}) , one can easily prove that $\overline{F(GH)} = \overline{(FG)H}$. So, the identity is an associativity constraint with respect to \otimes on $\mathbf{M}(\mathbf{C})$. The \otimes -category $\mathbf{M}(\mathbf{C})$ has unit object $I^* = (Id, \overline{Id})$, where Id is an identity functor of \mathbf{C} and $\overline{Id} = id$. Moreover, unit constraints can be chosen to be identities. So, we obtain the following lemma:

Lemma 3.5. The tensor category $\mathbf{M}(\mathbf{C})$ is a strict monoidal category.

From Theorem 2.1 and Lemma 3.5, we obtain the following result:

Theorem 3.6. Each monoidal category is monoidal equivalent to a strict one.

Proof. We now prove the theorem in the following steps:

Step 1. Define a monoidal functor $\Phi : \mathbf{C} \to \mathbf{M}(\mathbf{C})$ as follows:

$$\begin{split} \Phi(A) &= (L^A, \, \overline{L}^A), \\ \Phi(f)_X &= f \otimes id_X \, : \, A \otimes X \to B \otimes X, \end{split}$$

for any objects A, X and any morphism $f : A \to B$ in C. From the above example, (L^A, \overline{L}^A) is an *M*-functor and $\Phi(f)$ is an *M*-morphism.

Furthermore, one can verify that the triple $(\Phi, \tilde{\Phi}, \hat{\Phi})$ is a monoidal functor, where $\tilde{\Phi}$ and $\hat{\Phi}$ are isomorphisms defined by

$$\begin{split} \widetilde{\Phi}_{A,B}(X) &= (a_{A,B,X})^{-1} : (A \otimes B) \otimes X \to A \otimes (B \otimes X), \\ &(\widehat{\Phi}_X = l_X) : \Phi(I) \to I^*. \end{split}$$

Step 2. In this step, we prove the triple $(\Phi, \tilde{\Phi}, \hat{\Phi})$ is a monoidal equivalence. In order to do this, we have to exhibit a functor, which is the inverse equivalence of Φ . Consider the functor

$$\Gamma : \mathbf{M}(\mathbf{C}) \to \mathbf{C},$$

$$\Gamma(F, \overline{F}) = F(I), \quad \Gamma(\alpha) = \alpha_I : F(I) \to G(I),$$

for any *M*-functor (F, \overline{F}) and any *M*-morphism $\alpha : (F, \overline{F}) \to (G, \overline{G})$.

Observe that $\Gamma \Phi(f) = \Gamma(\Phi f) = (\Phi f)(I) = f \otimes id_I : A \otimes I \to B \otimes I$ for any morphism $f : A \to B$ in **C**. Then, we have the natural isomorphism $r : \Gamma \Phi \cong Id_{\mathcal{C}}$, where r is a right unit constraint of **C**. We now prove that, there exists an isomorphism ρ between $\Phi\Gamma$ and $id_{\mathbf{M}(\mathbf{C})}$ of **M**(**C**). We have

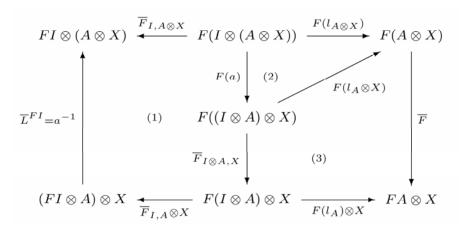
$$\begin{split} (\Phi\Gamma)(F,\,\overline{F}) &= \Phi(f(I)) = (L^{FI},\,\overline{L}^{FI}), \\ \Phi\Gamma(\alpha) &= \Phi(\alpha_I) : (L^{FI},\,\overline{L}^{FI}) \to (L^{GI},\,\overline{L}^{GI}), \end{split}$$

where $\alpha : (F, \overline{F}), (G, \overline{G}).$

We define the natural isomorphism $\rho : \Phi \Gamma \cong Id_{\mathbf{M}(\mathbf{C})}$ as follows:

$$\rho_{(F,\overline{F})}(X) = F(l_X)(\overline{F}_{I,X})^{-1} : (L^{FI}, \overline{L}^{FI})(X) \to (F, \overline{F})(X).$$
(3.6)

Consider the following diagram:



In this diagram, the region (1) commutes since it is the Diagram (3.1) for *M*-functor (F, \overline{F}) , the region (2) commutes thanks to the compatibility of the associativity constraint *a* with the unit constraint (I, l, r) (image through *F*), and the region (3) commutes thanks to the naturality of \overline{F} . Hence, the perimeter which is the Diagram (3.3) for the *M*-morphism $\rho_{(F,\overline{F})}$ commutes. This follows that the definition of the natural isomorphism ρ is well-defined. Since Φ is a categorical equivalence and from Theorem 2.1, we infer that Φ is a monoidal equivalence.

3.2. Almost strict Ann-categories

An Ann-category A is called *almost strict*, if its constraints, except for a distributivity one (left or right) and the commutativity one, are all identities.

We now construct an almost strict Ann-category $\mu(\mathbf{A})$ based on the Ann-category \mathbf{A} . First, let us assume that the Ann-category \mathbf{A} is a strict monoidal category with respect to \oplus (since any Ann-category is Ann-equivalent to a such Ann-category, Proposition 4.1 [4]).

Definition 3.7. The triple $(F, \breve{F}, \overline{F})$ is a μ -functor, if (F, \breve{F}) is a symmetric monoidal endo-equivalence with respect to \oplus , and (F, \overline{F}) is an *M*-functor with respect to \otimes of the Ann-category **A**, such that the following conditions hold:

(i) the family $(\overline{F}_{X,-})$ is an \oplus -morphism from $F \circ L^X$ to L^{FX} ,

(ii) the family $(\overline{F}_{-,Y})$ is an \otimes -morphism from $F \circ R^Y$ to $L^Y \circ F$.

A μ -morphism from $(F, \check{F}, \overline{F})$ to $(G, \check{G}, \overline{G})$ is an \oplus -morphism $\phi: F \to G$ making the following diagram commute:

Example. For any object $A \in \mathbf{A}$, the pair (L^A, \check{L}^A) , where $\check{L}^A_{X,Y} = \mathfrak{L}_{A,X,Y}$ is a μ -functor. Any morphism $u: A \to B$ determines a μ -morphism $\phi: (L^A, \check{L}^A, \overline{L}^A) \to (L^B, \check{L}^B, \overline{L}^B)$ defined by $\phi_X = u \otimes^{id} X$.

Hereafter, we denote a sub-category of $\mathbf{M}(\mathbf{A})$ by $\mu(\mathbf{A})$, whose objects are μ -functors of \mathbf{A} and whose morphisms are μ -morphisms. Then $\mu(\mathbf{A})$ is equipped with a strict monoidal structure induced by the one on $\mathbf{M}(\mathbf{A})$.

One can verify the following lemmas:

Lemma 3.8. $\mu(\mathbf{A})$ is a category with the operation \oplus defined by

$$(F \oplus G)X = FX \oplus GX,$$
$$(F \check{\oplus} G)_{X, Y} = \nu (\check{F}_{X, Y} \oplus \check{G}_{X, Y}),$$
$$(\phi \oplus \psi)_X = \phi_X \oplus \psi_X,$$

where $\nu = \nu_{A,B,C,D} : (A \oplus B) \oplus (C \oplus D) \rightarrow (A \oplus C) \oplus (B \oplus D)$ is the morphism built uniquely from the constraints a^+ , id, c in the Piccategory (\mathbf{A}, \oplus) .

Lemma 3.9. $\mu(\mathbf{A})$ is a category, whose the associativity and unit constraints are strict. Moreover, it has

(i) the zero object $0^* = (\theta, \ \theta, \ \overline{\theta})$ given by

$$\theta(X) = 0, \quad \theta(f) = id_0, \quad \check{\theta}_{X, Y} = id_0, \quad \overline{\theta}_{X, Y} = (\widehat{R}^Y)^{-1};$$

(ii) the commutativity constraint $c_{F,G}^*(X) = c_{FX,GX}$.

Proposition 3.10. $\mu(\mathbf{A})$ is an almost Ann-category, whose the distributivity constraints given by

$$\mathfrak{L}^{*}_{F, G, H}(X) = F_{GX, HX}, \ \mathfrak{R}^{*} = Id.$$

We are now ready to prove the main result of this section. This result was introduced in [5] (in Vietnamese). Here, we shall give a full and exact proof thanks to the results in Subsection 3.1 and Theorem 2.2.

Theorem 3.11. Any Ann-category is Ann-equivalent to an almost strict Ann-category.

Proof. As mentioned above, we always can suppose that the category **A** is strict monoidal with respect to the operation \oplus . We now show that **A** and the almost strict Ann-category $\mu(A)$ are equivalent. Consider the functor $\Phi : \mathbf{A} \to \mu(\mathbf{A})$ given by

$$\Phi(A) = (L^A, \ \check{L}^A, \ \bar{L}^A),$$

$$\Phi(u) = L(u) : L^A \to L^B, \quad L(u)_X = u \otimes X,$$

$$\check{\Phi}_{A, B}(X) = \Re_{A, B, X}, \quad \widetilde{\Phi}_{A, B}(X) = (a_{A, B, X})^{-1}$$

٠.

We shall prove that Φ is an equivalence. Consider the functor $J : \mu(\mathbf{A}) \to \mathbf{A}$ defined by

$$J(F, \check{F}, \bar{F}) = F(I), \quad J(F \xrightarrow{\phi} G) = (FI \xrightarrow{\phi_I} GI).$$

According to the proof of Theorem 3.6, we have isomorphisms

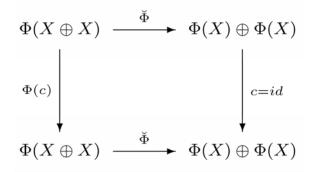
$$\alpha: J\Phi \cong Id_{\mathbf{A}}, \quad \beta: \Phi J \cong Id_{\mathbf{B}},$$

where $\alpha = r$, $\beta_F = \rho_F$ (ρ_F is defined by the relation (3.6)). One can verify that ρ_F is an \oplus -morphism, and therefore is a μ -morphism. This shows that Φ is an equivalence. According to Theorem 2.5, Φ is an Annequivalence.

Proposition 3.12. The condition $c_{X,X} = id$ (the regular condition) for any object $X \in \mathbf{A}$ is necessary and sufficient for the Ann-category \mathbf{A} to be Ann-equivalent to an Ann-category, whose commutativity constraint is the identity.

Proof. Assume that the Ann-category **A** satisfies the regular condition for the commutativity constraint c, in the sense $c_{X,X} = id$, for all $X \in \mathbf{A}$. Then **A** is Ann-equivalent to **A**', which is symmetric monoidal category with respect to \oplus . By Proposition 3.9, the commutativity constraint c^* of $\mu(\mathbf{A}')$ is the identity.

Conversely, from the commutative diagram



we have $\Phi(c_{X,X}) = Id$, where Φ is an Ann-equivalence. Therefore, $c_{X,X} = id$.

References

- C. Kassel, Quantum Groups, Graduate Texts in Mathematics, Springer-Verlag, Berlin/ New York, 155 (1995).
- [2] J. Kock, Elementary remarks on units in monoidal categories, Math. Proc. Cambridge Philos. Soc. 144(1) (2008), 53-76.
- [3] S. Mac Lane, Natural associativity and commutativity, Rice University Studies 49(4) (1963), 28-46.
- [4] N. T. Quang, Introduction to Ann-categories, Tap chi Toan hoc, Hanoi 15 (1987), 14-24 [arXiv: 0702588 v2 [math.CT], (21 Feb 2007)].
- [5] N. T. Quang, Enough strict Ann-categories (in Vietnamese), J. Mathematics 20(1) (1992), 41-47.
- [6] N. T. Quang, On Gr-functors between Gr-categories: Obstruction theory for Gr-functors of the type (φ, f) , arXiv: 0708.1348 v2 [math.CT], (2009).
- [7] N. T. Quang and D. D. Hanh, Cohomological classification of Ann-functors, East-West Journal of Mathematics 11(2) (2009), 195-210.
- [8] N. Saavedra Rivano, Categories Tannkiennes, Lecture Notes in Mathematics 265, Springer-Verlag, Berlin-Heidelberg-New York, 1972.
- [9] Peter Schauenburg, Turning monoidal categories into strict ones, New York J. Math. 7 (2001), 257-265.