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Abstract

In this paper, we prove that a monoidal functor (an Ann-functor) F'is a monoidal
equivalence (resp., an Ann-equivalence) iff F' is a categorical equivalence. Then,
we introduce a general method to make the constraints of a monoidal category
and of an Ann-category be strict.

1. Introduction

Monoidal categories appear in every mathematical fields. They are
the most simple example of categories with an operation and it is also a
categorification of the notion of monoid. Some more complexed algebraic
structures such as groups, abelian groups, and rings have been
categorified by the notions of Gr-categories, braided categories,
Pic-categories, and Ann-categories. To make the uses of these notions
conveniently, we need to make each axiomatics more simple (so-called the

stricting of the constraints). There are many different proofs for stricting
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the constraints of monoidal categories (see [1], [9]). Similar results have
been stated for Gr-categories [6], for Ann-categories [5]. Monoidal
categories with a strict associativity constraint have been used to

construct a braided categories (see [1]), or to study unit constraints (see
[2]).

The main content of this paper is to introduce characters of monoidal
equivalences and Ann-equivalences, and to apply them to the problem of
stricting the constraints of monoidal categories and of Ann-categories
with the same technique. It is known that if M is an A-module, then
Homy (A, M) = M. This result can be extended for Ann-categories,
where module homomorphisms are replaced by p- functors. If the notion
of u-functors is replaced by a weaker notion, we shall obtain an
equivalence between a monoidal category and a strict one. The notion of

u- functor was first introduced in [5] (in Vietnamese). The proof that any

Ann-category is equivalent to an almost strict one (Theorem 3.11), is
firstly a full and exact modification of [5], and secondly includes the proof

that any monoidal category is equivalent to a strict one (Theorem 3.6).

Fundamental notions on monoidal categories and Ann-categories can
be found in [3, 4, 7, 8]. Hereafter, for any objects A and B, for
convenience, let us denote AB instead of A ® B. However, for morphisms,

we still denote f ® g to avoid confusion with a composition.

2. Ann-Equivalences Between
Ann-Categories

2.1. Monoidal equivalences
A monoidal category (C,®, I, a,l, r) is a category C, which is

equipped with a bifunctor ® : C x C — C; with an object I, called the unit

object and with isomorphisms, which are, respectively, called the

associativity constraint, the left and right unit constraint

aAyB,CiA®(B®C)—)(A®B)®C,
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[p:I®A > A ry :A®I > A,
satisfying the coherence conditions
(aa,B,c ®idp)-aa Bec,p - (idas ® apc p) = aaes.c,D %A B .CoD
idy ®lp =(ry ®idg)-aa 1 B-

A monoidal category is strict, if the constraints a, [, r are all

identities.
Let C=(C,®,I,a,l,r) and D= (D, ®, I',a’,I', r') be monoidal

categories, a monoidal functor from C to D is a triple (F, F, f‘), where

F : C —» D is a functor, a natural isomorphism

Fop:F(A®B) - FA® FB,

and an isomorphism F:FI > 1 ' satisfying the following coherence

conditions:

(Fo.p ® FC)- Fap ¢ - Flaa p.c)=ara rp.rc (FA® Fp o) Fy pe,

(1.1)
F(ry)=Fr,4-(id®F )-rjy, (1.2)
F(ly)=Far-(F®id) . (1.3)

A monoidal natural transformation o.: (F, F, F)— (G, G, G) between
monoidal functors from C to C' is a natural transformation a : F — G,

such that
F=G-oy, (1.4)

and for all pairs (A, B) of objects in C

(aqa ®ap) Fup=Gyp-aup (1.5)

A monoidal functor F : C - D is a monoidal equivalence, if there

exists a monoidal functor G : D —» C together with natural monoidal
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isomorphisms o :G-F > idg and B: F -G — idp. Two monoidal

categories are monoidal equivalent, if there exists a monoidal equivalence
between them.

We shall first prove a simple character of monoidal equivalences.

Theorem 2.1. A monoidal functor F :C — D is a monoidal

equivalence iff F is a categorical equivalence.
Proof. Let F :C —- D be a monoidal functor with a natural
isomorphism

Fxy :FX®FY » F(XQ®Y).

Since F' i1s a categorical equivalence, there exists a functor G : D —» C

and morphisms o : GF — id¢ and B : FG — idp. Moreover, we can
choose a, B such that the quadruple (F, G, a, B) satisfies F(o ) = Bra;
G(Bg) = agpg, for all objects A € C, B € D. The natural isomorphism

Gyy :GU®GV - GU®YV),

for U, V e D is defined by the commutative perimeter, FG is defined by

the commutative region (1) of the following diagram:

3 Vv

FGUV) —~ UV

F(GU.GV) (1) FG (2) id

‘p\ !

FGU.FGV ———— UV.
Bu ®Bv

It follows that the region (2) commutes, so B is an ® -morphism. Finally,

o 1s a morphism since B is a morphism. O
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2.2. Ann-equivalences

A Pic-category 1s a Gr-category together with a commutativity
constraint ¢, which is compatible with the associativity one. In other words,
a Pic-category is a symmetric monoidal category in which every object is
invertible and every morphism is an isomorphism. It is considered as a
categorification of the abelian group structure. The notion of Ann-
categories is constructed as a categorification of the ring structure. An

Ann-category consists of
(1) a category A together with two bifunctors @, ® : Ax A — A;
(1) a fixed object 0 € A together with natural isomorphisms

a*,c, g, d such that (A, ®, a", ¢, (0, g, d)) is a Picard category (or a
Pic-category);

(111) a fixed object I € A together with natural isomorphisms a, I, r

such that (A, ®, a, (I, [, r)) is a monoidal category;
(iv) the distributive natural isomorphisms £, R
Laxy A®XOY)> (A®RX)®(ARY),
Rypxy XOY)®A > (XQRA)D(Y®A),
satisfy the coherence conditions (see [4] for more detail).

Let A, B be Ann-categories. An Ann-functor from A to B is a triple

(F, ﬁ', F‘), where (F, ﬁ) is a symmetric monoidal ®- functor and (F, FN')

is a monoidal ®-functor such that the two following diagrams commute:

id@ F

FX(Y @ 2)) FXF(Y ® Z) FX(FY & FZ)

F(g) of

PP
F(XY & XZ) T . F(XY)® F(XZ) — FXFY ®FXFZ,

2.1)
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v
F(X®Y)Z) —— F(X®Y)FZ (FX @ FY)FZ
F(R) n/

FoF
F(XZ®YZ) F(XZ)® F(YZ) —— FXFZ® FYFZ.

(2.2)

Let F, G be Ann-functors. A morphism ¢ : F — G is an Ann-morphism,
if it is an @- morphism, as well as an ®-morphism, i.e., the following

diagrams commute:

F(A®B) —F . FA®FB F(AB) —F . FAFB
P.-x:g;rsl lvm’-’jvn '»9,451 lsmx'w;
c(AoB) —% . CA®GB c(AB) —% . qacB

An Ann-functor F : A — B is an Ann-equivalence, if there exists another
one G:B —> A and Ann-isomorphisms a : GF = idy, B : FG = idg.
Two Ann-categories are Ann-equivalent, if there exists an Ann-equivalence

between them. The main result of this section is the following theorem:

Theorem 2.2. An Ann-functor F : A — B is an Ann-equivalence iff

F'is a categorical equivalence.
In order to prove this theorem, we first prove the following lemma:

Lemma 2.3. If the natural equivalence o :F =G is an
@ -morphism, as well as an ® -morphism, and the functor F : A — B is

compatible with the left distributivity constraints £, £', then G is also
compatible with £, £'. Similarly, this holds for the right distributivity
constraints R, R’

Proof. In the following diagram, the regions (1) and (5) commute

since o i1s an ®-morphism; the regions (2) and (4) commute since o is an
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@ - morphism; the region (3) commutes thanks to the compatibility of F
with £, £'; the region (6) commutes since o 1is a morphism; and the
region (7) commutes thanks to the naturality of £'.

2 o M
GA

—— G(X(Y®Z)) ——— GXG(Y&Z) ————  GX(GY&GZ)

a (1) o @ o ‘ (2) a®(ada)
P FX@F
F(X(Y®Z)) — FXF(Y@®Z)) —— FX(FY®FZ)
G(L) (6) ()] iy

F(L) (3) o

G P ] : FaoF

FIXY@XZ) — F(XY)gF(XZ) — FXFYgFXFZ

@ (4) o & o (5) (a®a)®(a® a)
_ e Gal )

s G{XYaXZ) — = GXYjeG{Xz) — > GXGYaGxXgz

Hence, the perimeter commutes, it implies that G is compatible with
gL, 8. O

Using the above lemma, we prove the following lemma:

Lemma 2.4. Let F : A - B and G: B — A be functors. If F is
compatible with £, £' and the natural isomorphism o : FG = idg is an
@ - morphism, as well as an ® -morphism, then G is also compatible with
g, L.

Proof. Consider the following diagram: In this diagram, the regions
(1) and (5) commute thanks to the definition of F G; the regions (2) and
(7) commute thanks to the definition of Fé; the region (3) commutes
thanks to the naturality of F ; the region (6) commutes thanks to the
naturality of F; and the region (8) commutes thanks to the compatibility

of F with £, £'. According to Lemma 2.3, FG is compatible with £', £/,

so the perimeter commutes. Therefore, the region (4) commutes; this
region is just the image through F of the diagram determining the
compatibility of G with £/, £.
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FGX (FGY®FGZ) —
FGX® F‘(;/
_— (1) FGX®F

FGX ® FG
FGX FG(Y®Z) ——————— FCX F(GY®GZ)

Vu) {f‘ @)

F(&H F(GX @ &) L
FG(X(Y® Z)) - »  F(GXG(Y®Z)) - = F(GX(GY®GZ))

e

5]

FG(L£) (4) F(£) (8) fif

F(G) F(& o éh _
FG(XY®XZ) ——— F(G(XY)aG(XZ)) ———— F(GXGYBGXGZ)

—
N(s) i (6) i
Fe:‘ & Ff:‘
FG(XY)RFG(XZ) —————— F(GXGY)®F(GXGE)
“H-‘-\-H-\ - -
. (M |FeF
FCa TG

(FGX FGY)&(FGX FGZ) ~—
Since F'is faithful, G is compatible with £, £'. This completes the proof.

O

The proof of Theorem 2.2. By Theorem 2.1, there exists a functor
G:B > A and a natural isomorphism G such that (G, G) is a
monoidal ® -functorand o : GF = idy, B : FG = idg are ®-isomorphisms.

For the operation @, there exists a natural isomorphism G such that
(G, G ) is an @- functor and a, B are @-isomorphisms. By Lemma 2.3,

the triple (G, G, é) is an Ann-functor. Therefore, (F, F.F ) is an Ann-

equivalence. O
3. Almost Strict Ann-Categories

3.1. Strict monoidal categories
The proof of Cayley theorem for groups and the proof of
Homp(R, M) = M, for R-modules use the same technique. This suggests

us a united technique to make a monoidal category, as well as an Ann-

category be strict.
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Definition 3.1. An M-functor of the monoidal category C is a pair

(F, F), consisting of a functor F : C —» C and a natural isomorphisms
Fyp:F(A®B) > FA® B,
such that the following diagrams commute:

F(A® (B®C)) ) - F((A® B)®0)

F F

(0 F@"’d r
FA®(B®C) ——+ (FA® B)®C ~———— F(A® B)®C,

3.1
FA®T) - FA®I
F(ra) ;/M
FA (3.2)

Let (F,F) and (G,G) be M-functors of C. An M-morphism
o:(F,F) > (G, G) is a morphism o : F — G such that the following

diagram commute:
F
F(A® B) — FA®B

G(A® B)

GA®B

(3.3)
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The composition of two M-morphisms is known as the composition of two
usual morphisms. One can verify that the composition of

M-morphisms is also an M-morphism.

Example. For any object X of C, the pair (L%, LX) defined by
LX(A)=X®A, L*(w)=idy ®u, LXp=ax g

is an M-functor of C. For any pair (X, Y) of objects of C and a morphism
f:X — Y, the morphism « : X 5 Y given by ay = f®idy 1s a
M-morphism of C.

The set of all M-functors and M-morphisms of C forms a category,
denoted by M(C). We now equip M(C) with an operation ® together

with an associativity constraint a*, a unit constraint (I*, I*, r*) to make

it become a monoidal category.

Lemma 3.2. Let (F, F) and (G, G) be M-functors of C. Then, the

composition FG is also an M-functor with the natural isomorphism FG
defined by following commutative diagram, for any pair (A, B) of objects
of C:

FG(A® B) » FGA® B

U

F(GA® B)

(3.4)

Proof. In the following diagram, the regions (1) and (4) commute
thanks to Diagram (3.1) for the M-functors F, G. The region (2) commutes

thanks to the naturality of F. The regions (3), (5), and (6) commute
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thanks to the definition of the isomorphism FG. Therefore, the perimeter

which is the Diagram (3.1) for (FG, FG) commutes.

——  FG((A®B)&C) FG(a) FG(A®(BRC)) —
F(G) (1) F(G)
FG F((:(A-&B)ojc(':)m F((GA®B)2C) @ F(GA®(B®C)) FG
(3) F (2) F (4) F (6)
FG(;-‘\-&:-B)IX:C @ F(GA®B)&C FGA®(BRC)
FG®id (3) Foid a
(FGA®B)@C

We now prove that FG satisfies (3.2). For any object A of C, we have

— (34 — _ 3.2 — (32
rrga - FG A, T (=)’”FGA (Fga, 1 'F(GA,I))(=)F(VGA)' F(GA,I)(=)FG('“A)-

O
Lemma 3.3. For any pair (F, F)% (F', F'); (G, 5)&(6?’, G')) of
M-morphisms of C, the morphism
a*xpB: FG > F'G',

defined by the following commutative diagram:
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FG'A
F(Ba) \air’A
(axB) A
GV EEE LR » F'G'A
ab‘ F'(Ba)
F'GA

(3.5)
is an M-morphism from (FG, FG) to (F'G', F'G').

Proof. Consider the following diagram. The regions (1) and (6)
commute thanks to definitions of the isomorphisms FG and FG
(Diagram (3.4)), the regions (3) and (5) commute thanks to definitions of
M-morphisms (Diagram (3.3)) «, F'. The regions (2) and (4) commute
thanks to the naturality of the morphisms «, B. The regions (7) and (8)

commute thanks to the determination of a *  (Diagram (3.5)).

FG(A®B) FGA®B
N" (1) /

aG(ARB) F(GA=B) g ®id

@ agag ”l (3)
F'(G F a . @
(a*B)agn FGASB) ——C) e F(GASB)}——» FGA®B (axBla® B
@ F(B & id) l (8)

F'(8) () P@age) @ F(8) ®id

M*) (6) P
L F'G'(A®B) : F'G'A@B ~—
e

Hence, the perimeter which is the Diagram (3.5) for o *  commutes. [
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Lemma 3.4. The category M(C) becomes an ®-category together with
the operation ® defined by

(F,F)®(G, G) = (FG, FG),
a®B=0*p: FG - F'G'.

Proof. Thanks to Lemmas 3.2 and 3.3, the tensor product of two
M-functors is an M-functor and the tensor product of two M-morphisms is
an M-morphism. One can verify that the law ® determined above is a

tensor operation. Therefore, M(C) is an ®-category. O

For M-functors (F, F), (G, G), (H, H), one can easily prove that

F(GH) = (FG)H. So, the identity is an associativity constraint with
respect to ® on M(C). The ®-category M(C) has unit object

I* = (Id, Id), where Id is an identity functor of C and Id = id.

Moreover, unit constraints can be chosen to be identities. So, we obtain

the following lemma:

Lemma 3.5. The tensor category M(C) is a strict monoidal category.

From Theorem 2.1 and Lemma 3.5, we obtain the following result:

Theorem 3.6. Each monoidal category is monoidal equivalent to a

strict one.
Proof. We now prove the theorem in the following steps:

Step 1. Define a monoidal functor ® : C — M(C) as follows:
®(A) = (L4, L4),
o(f)y = f®idy : A®X - B® X,

for any objects A, X and any morphism f: A — B in C. From the

above example, (L4, L) is an M-functor and ®(f) is an M-morphism.



54 NGUYEN TIEN QUANG

Furthermore, one can verify that the triple (®, @, &\)) is a monoidal

functor, where ® and ® are isomorphisms defined by
DypX)=(agapx) ' 1 (A®B)®X > A®(B®X),
(Ox =lx ): D) > I".

Step 2. In this step, we prove the triple (@, @, &)) is a monoidal

equivalence. In order to do this, we have to exhibit a functor, which is the

inverse equivalence of ®. Consider the functor

r:M(C) - C,
I(F,F)=F(I), T(a)=oa;:FI) - GI),
for any M-functor (F, F) and any M-morphism o : (F, F) - (G, G).

Observe that TO(f)=T(0f)=(0f)(I)=f®id; : AR - B®I
for any morphism f: A — B in C. Then, we have the natural
isomorphism r : T'® = Id,, where r is a right unit constraint of C. We

now prove that, there exists an isomorphism p between ®I' and idM(C)

of M(C). We have
(@r)(F, F) = o(f(I)) = (L', '),
or(a) = (ay) : (L7, L) > (L9, L),
where o : (F, F), (G, G).
We define the natural isomorphism p : @I = Idyc) as follows:
p(r. ) (X) = Flix)(Fr,x) "« (L7, I (X) > (F, F)(X).  (3.6)

Consider the following diagram:
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Fragx Flagx)
FI®(A® X) F(I®(A® X)) F(A® X)
A
F(a) (2)
F(la®X)
Y
TFI_,—1 (1) F((I®A)®X) F
Frga,x (3)
Y  J
(FI® A)® X FIeA)®X FAR X
Fra®X F(la)®X

In this diagram, the region (1) commutes since it is the Diagram (3.1)
for M-functor (F, F ), the region (2) commutes thanks to the compatibility
of the associativity constraint a with the unit constraint (I, [, r) (image
through F), and the region (3) commutes thanks to the naturality of F.
Hence, the perimeter which is the Diagram (3.3) for the M-morphism
P(F,F) commutes. This follows that the definition of the natural
isomorphism p is well-defined. Since ® is a categorical equivalence and

from Theorem 2.1, we infer that ® 1s a monoidal equivalence.
3.2. Almost strict Ann-categories

An Ann-category A is called almost strict, if its constraints, except for
a distributivity one (left or right) and the commutativity one, are all
identities.

We now construct an almost strict Ann-category p(A) based on the

Ann-category A. First, let us assume that the Ann-category A is a strict
monoidal category with respect to @ (since any Ann-category is Ann-
equivalent to a such Ann-category, Proposition 4.1 [4]).

Definition 3.7. The triple ( F, F, F) is a u- functor, if (F, F) is a
symmetric monoidal endo-equivalence with respect to @, and (F, F ) is

an M-functor with respect to ® of the Ann-category A, such that the
following conditions hold:
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(i) the family (FX,—) is an @- morphism from F o LX to LFX,
(i1) the family (F—,Y) is an ®-morphism from F o RY to LY o F.

A p-morphism from (F,F,F) to (G, G, G) is an ®- morphism

¢ : F - G making the following diagram commute:
F
FX®Y) — FXQY
X RY naARidp

G(X®Y) GXQY

Example. For any object A € A, the pair (LA, iA), where ZS‘( y =

£a,x,y is a p-functor. Any morphism u: A — B determines a
a4 —A on —B .
- morphism ¢ : (L4, IA, L) - (LB, B, L") definedby ¢x = u ®“¢X.

Hereafter, we denote a sub-category of M(A) by u(A), whose objects
are p-functors of A and whose morphisms are p-morphisms. Then u(A)

is equipped with a strict monoidal structure induced by the one on M(A).

One can verify the following lemmas:

Lemma 3.8. u(A) is a category with the operation ® defined by

(F®G)X = FX ® GX,
(F®G)y y=v(Fy y ® Gx, y),

(0@v)x = ox @y,
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where v=vypcp:(A®B)@(CO®D) > (ADC)®(B®D) is the

morphism built uniquely from the constraints o, id, ¢ in the Pic-

category (A, ®).

Lemma 3.9. u(A) is a category, whose the associativity and unit

constraints are strict. Moreover, it has

(i) the zero object 0" = (8, 0, 0) given by
. = . —_ ’\Y 71
0(X)=0, 6(f)=idy, Ox y=idy, Ox y=(R )" ;
(ii) the commutativity constraint cp ¢(X) = cpx gx-

Proposition 3.10. p(A) is an almost Ann-category, whose the

distributivity constraints given by
Cr ¢, 10 X)=Fox, gx. ® =1d.

We are now ready to prove the main result of this section. This result
was introduced in [5] (in Vietnamese). Here, we shall give a full and exact

proof thanks to the results in Subsection 3.1 and Theorem 2.2.

Theorem 3.11. Any Ann-category is Ann-equivalent to an almost

strict Ann-category.

Proof. As mentioned above, we always can suppose that the category
A is strict monoidal with respect to the operation ®. We now show that A

and the almost strict Ann-category p(A) are equivalent. Consider the

functor ® : A — p(A) given by
®(4)= (14, L4, T,
() =Lw): L* > P, Ly =u®X,

< ~ 1
Oy p(X)=RaBx, PapX)=(asapx) -

We shall prove that @ is an equivalence. Consider the functor < : u(A)
— A defined by
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J(F, B, F)=F(D), J(FSa)=(rr%ar).
According to the proof of Theorem 3.6, we have isomorphisms
o:JO = Idy, Pp:&J = Idg,
where o =7, Br = pr (pp is defined by the relation (3.6)). One can

verify that pp is an @- morphism, and therefore is a p- morphism. This

shows that @ is an equivalence. According to Theorem 2.5, @ is an Ann-

equivalence. 0
Proposition 3.12. The condition cx x = id (the regular condition)

for any object X € A is necessary and sufficient for the Ann-category A to
be Ann-equivalent to an Ann-category, whose commautativity constraint is

the identity.

Proof. Assume that the Ann-category A satisfies the regular

condition for the commutativity constraint c, in the sense cx x = id, for

all X € A. Then A is Ann-equivalent to A’, which is symmetric monoidal

category with respect to ®. By Proposition 3.9, the commutativity

constraint ¢ of u(A’) is the identity.

Conversely, from the commutative diagram

BXBX) — » B(X)®D(X)
P(c) c=id

BX®X) — v (X) B(X)

we have ®(cx x)= Id, where ® is an Ann-equivalence. Therefore,

Cx, x = id. U
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